

Delivering science and technology to protect our nation and promote world stability

Neutron Clustering Measurements at RPI

Nicholas Thompson, LANL Jesson Hutchinson, LANL Rian Bahran, LANL Eric Dumonteil, IRSN Wilfried Monage, IRSN 3/27/2018

National Nuclear Security Administration

Neutron Clustering

- As mentioned earlier:
 - At low power levels in a critical system, neutrons may start to cluster
 - Has been seen in simulations
- Measurements at RPI were to try to measure this in a real reactor
- Measurements were a collaboration between LANL, IRSN, and RPI

In 2016, LANL/UMich Performed Subcritical Measurements at the RPI-RCF with LANL Neutron Multiplicity Detectors

- Phase 1: Established a protocol for subcritical neutron multiplication measurements at a research reactor
 - Did not drown <u>very expensive</u> state-of-the-art NOMAD multiplicity detectors (15 He-3 tubes encased in poly)
- Phase 2: Perform benchmark quality measurements at Sandia (SPRF/CX)

J. Arthur, R. Bahran, J. Hutchinson, A. Sood, N.

Thompson, S. Pozzi "Development of a Research Reactor

Protocol for Neutron Multiplication Measurements",

Progress of Nuclear Energy 106 (2018) 120-139

ments, Malianlication is an extremely important parameter in SNM emitted per fusion. Simulation capabilities were historically developed

3/27/2018 | 4

RPI RCF

- "Zero power" reactor (maximum operating power = 15 W)
 - Fuel is essentially "fresh", not activated
 - Makes it very easy to set up and perform experiments
- UO₂ ceramic fuel, 4.81 wt. % ²³⁵U, 335 fuel pins for measurements
 - Fuel is 36 inches active length
- Water moderated
- Four boron control rods surrounding the core

Simulations of the RCF Measurements

- Simulations of the experiment showed it might be possible to measure clustering at the RCF
- Experiments were designed with two NOMAD detectors

- Were able to complete three full days of experiments
- Experiments used two NOMAD detectors
- Also used ³He tubes in the core

Los Alamos National Laboratory 8

- Made over a dozen critical measurements at different reactor powers, from less than 1 mW to 0.85 W
 - 0.93 mW, 1 mW, 1.4 mW, 1.7 mW, 4.1 mW, 4.6 mW, 7.0 mW, 43 mW, 85 mW, 90 mW, 90 mW
 - 0.47 W, 0.85 W
 - Measurement times varied from 30 seconds to 2 hours long
- During the measurements, we did not adjust control rod positions
 - Because of this, some measurements were slightly above or below critical
- Measured with the in core ³He detectors, NOMAD detectors, and RCF detectors (uncompensated ion chambers)
 - In core ³He detectors tended to saturate at fairly low power levels

Approach to Measurements

- Performed 1/M Approach to critical
- Critical Bank Height
- Excess Reactivity
- Measurement of reactivity of most reactive pin
- Power Calibration
- Water tests (for NOMAD detector enclosures)

• For each change in configuration (adding more fuel pins, adding more ³He detectors), needed to make sure the reactor would be operated safely and within tech specs/regulations.

Power Calibration

- Power calibration was performed by irradiating gold foils
 - Brought the reactor critical for 30 minutes at ~1 Watt
 - After, measured the gold foils, and compared activity to an MCNP simulation of the reactor
 - This was used to calibrate the RCF detectors
- NOMAD detector data was then converted to count rate, corrected for deadtime, and scaled to power
- In next few plots NOMAD detectors were not constantly counting, only when a particular measurement was being made. This helped to conserve batteries (and storage space).

- Very good agreement between LP2 indicated power and NOMAD detector, even at indicated reactor power of under 20 µW
- LP1 and PP2 detectors had too much background to be useful at low powers

- Some discrepancies mostly due to operating at a higher power and then dropping to a lower power
- LP2 (uncompensated ion chamber) is sensitive to gammas, NOMAD detectors are not, discrepancies are due to decay gammas

- Example of one measurement ~5 mW
- Two hour measurement 500 MB of data, ~60,000,000 counts

Results still preliminary
Simulation of spatial

$$g_t(r) = \frac{\lambda v_2}{8Dc_0 \pi^{3/2} r} \Gamma\left(\frac{1}{2}, \frac{r^2}{8Dt}\right)$$
$$g_t(r) \propto \frac{1}{c_0} = \frac{1}{P}$$

RCF results of spatial correlations vs power

Results still preliminary

Modelling of spatial correlations vs distance

$$g_t(r) = \frac{\lambda v_2}{8Dc_0\pi^{3/2}r} \Gamma\left(\frac{1}{2}, \frac{r^2}{8Dt}\right) g_t(r) \propto \frac{1}{r}$$

RCF results of spatial correlations vs distance

- Still working on analyzing the data (there is a lot of data)
- Now have accurate estimates of power for all measurements
- Preliminary evidence of spatial correlations, as a function of power, distance, and time

Thanks!

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.